Self-adjointness for Dirac operators via Hardy-Dirac inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-adjointness of Dirac Operators via Hardy-dirac Inequalities

Distinguished selfadjoint extension of Dirac operators are constructed for a class of potentials including Coulombic ones up to the critical case, −|x|. The method uses Hardy-Dirac inequalities and quadratic form techniques.

متن کامل

Self-adjointness via Partial Hardy-like Inequalities

Distinguished selfadjoint extensions of operators which are not semibounded can be deduced from the positivity of the Schur Complement (as a quadratic form). In practical applications this amounts to proving a Hardy-like inequality. Particular cases are Dirac-Coulomb operators where distinguished selfadjoint extensions are obtained for the optimal range of coupling constants.

متن کامل

Minimax Principles, Hardy-Dirac Inequalities, and Operator Cores for Two and Three Dimensional Coulomb-Dirac Operators

For n ∈ {2, 3} we prove minimax characterisations of eigenvalues in the gap of the n dimensional Dirac operator with an potential, which may have a Coulomb singularity with a coupling constant up to the critical value 1/(4 − n). This result implies a socalled Hardy-Dirac inequality, which can be used to define a distinguished self-adjoint extension of the Coulomb-Dirac operator defined on C0 (R...

متن کامل

J -self-adjointness of a Class of Dirac-type Operators

In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...

متن کامل

Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators

By expanding squares, we prove several Hardy inequalities with two critical singularities and constants which explicitly depend upon the distance between the two singularities. These inequalities involve the L norm. Such results are generalized to an arbitrary number of singularities and compared with standard results given by the IMS method. The generalized version of Hardy inequalities with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2007

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.2811950